- Tech
-
-
Tech
The gadgets, platforms, and software that make your digital life possible. If it bleeps, clicks or blinks, you’ll find it here.
-
Devices
-
Categories
-
-
- Internet Culture
-
-
Internet Culture
-
Categories
-
Featured
-
-
- Streaming
-
-
Streaming
-
Services
-
Featured
-
-
- IRL
-
-
IRL
-
Categories
-
Featured
-
-
- Social
-
-
Social
-
Categories
-
Featured
-
-
- Live TV
-
-
Live TV
-
Services
-
Guides
-
-
- More
- Search
See all Editor's Picks →
See all Popular →
Represented by Complex Media, Inc. for advertising sales.
Privacy Policy Terms & Conditions Ethics
Latest
- UPS facing backlash for thanking police after employee killed in shootout Saturday 5:02 PM
- Sanders campaign fires staffer after anti-Semitic, homophobic tweets surface Saturday 3:13 PM
- Brother Nature was attacked, says everyone just watched with phones out Saturday 2:45 PM
- Ryan Reynolds’ gin company hires Peloton wife for ad Saturday 1:24 PM
- Ex-vegan YouTuber accused of fraud after following meat-only diet Saturday 1:11 PM
- The 15 best Disney+ hidden gems and deep cuts Saturday 12:23 PM
- Everyone in GoFundMe scam involving homeless veteran has now pleaded guilty Saturday 12:06 PM
- Boy invites kindergarten class to his adoption–and people are emotional Saturday 11:56 AM
- Reddit links leaked trade deal documents to Russian campaign Saturday 10:44 AM
- How to stream Alistair Overeem vs. Jairzinho Rozenstruik Saturday 8:30 AM
- Amazon sends customers condoms and soap instead of Nintendo Switch Saturday 8:28 AM
- How to live stream Jermall Charlo vs. Dennis Hogan Saturday 8:00 AM
- Apple TV’s ‘Truth Be Told’ is a criminally dull drama Saturday 6:00 AM
- Thousands of Uber users have reported sexual assaults, company says Friday 5:40 PM
- ‘Astronomy Club’ reformats the sketch show Friday 4:58 PM
Engineers 3D print a ‘living tattoo’ with a new kind of ink
Smart “living” tattoos can light up in response to environmental stimuli.
Bulky, electronics-filled wearables are on the out. MIT researchers have developed a new kind of “living tattoo” that could be used in place of today’s wearable sensors and touch displays.
The tattoo, 3D-printed using genetically programmed bacterial cells, can light up when it detects various environmental stimuli. The researchers tested their technique by printing out a thin living tattoo shaped like a tree. The tree’s branches are sensitive to different chemical stimuli. When those are detected, the branches light up. The bacterial cells within, suspended in a gel-like mixture of hydrogels and nutrients, can respond to things such as pollutants, pH levels, and temperature changes.
As seen in their tree-shaped proof-of-concept, the engineers can use this technique in flexible, wearable stickers and patches, when this bacterial mixture is printed and cured on a layer of stretchy elastomer. However, it could also be implemented in pills, or in surgical implants. In treating conditions such as diabetes or hypoglycemia, for example, such an implant could release glucose, helping to keep blood sugar levels from dipping too low.
“We can use bacterial cells like workers in a 3-D factory,” said graduate student Xinyue Liu. Liu is a member of the research team and a co-auther of its paper published in Advanced Materials this week.
We’ve seen developments similar to this before. Earlier this year, Harvard and MIT researchers worked together to create biosensitive tattoo ink that can detect various conditions, such as whether you’re dehydrated or have low blood sugar. Another variant, TechTats, would give you wearable-style data stats but painted on your skin much like a henna tattoo.
For MIT’s team, one challenge was finding a type of cell strong enough to handle the stresses of 3D printing. Mammal cells were too sensitive, but bacteria cells, which have stronger cell walls, proved ideal. The team used a customized 3D printer to print out its living ink.
In the future, this 3D-printing technique could be used to develop an entire living computer composed of cells that communicate with one another, much like the components inside a microchip. This could be the beginning of the end for the transistor—at least in wearable health devices.
H/T MIT News

Christina Bonnington
Christina Bonnington is a tech reporter who specializes in consumer gadgets, apps, and the trends shaping the technology industry. Her work has also appeared in Gizmodo, Wired, Refinery29, Slate, Bicycling, and Outside Magazine. She is based in the San Francisco Bay Area and has a background in electrical engineering.